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1. Phys.: Condens. Matter 6 (1994) 62454255. Prinled in the UK 

Energy spectrum of a Bloch electron on a two-dimensional 
lattice with long-range hopping in a magnetic field 

V M Gvozdikov 
Depmment of Physics. Kharkov State University. Kharkov, 310077, Ukraine 

Received 4 December 1993 

Abstract. The density of states (Dos) of the Bloch electron on a two-dimensional (20) lattice 
in an external perpendicular magnetic field is exaelly calculated in the case of a rational flux 
through an elementary cell in the model with expo~entidly decreasing, as a function of inter-site 
spacing, overlap integrals. A generalization of this model to the case of an may of piupllel 
chains with tight-binding correlations between them is considered, and the appropriate DOS is 
calculated. A quasiclassical quantiwtion rule is obtained for arbitrary electron dispersion along 
the chins in the low-flux limit, which yields, for energies n w  the band bottom, Landau levels 
that broaden into bands of width proportional to a magnetic breakdown-like probability factor. 
The analogy between the Wmnier-Stark ladder and the Landau spectrum for a Bloch electron 
an B ZD lattice is considered. Possible applications to organic conductors and superconducting 
superlattices are discussed. 

1. Introduction 

The problem of the electron energy spectrum on a two-dimensional (ZD) lattice has been in 
the spotlight during the past decades since it has many applications in solid-state physics: 
in superconductor networks [l], in the quantum Hall effect [2], in anyon superconductivity 
[3], in flux phases of the Hubbard model [4], and so on. Beginning with the works of Azbel 
[ 5 ]  and Hofstadter [6] i t  is well known that the energy spectrum of electrons in a 2D lattice 
depends strongly on the ratio QjCJo, where CJ is the flux per unit cell and @O = hcje  is the 
flux quantum. For the irrational flux case, the energy spectrum is of fractal nature, whereas 
the integrated density of states (DOS), as was first pointed out in [7], approaches some 
regular curve when the irrational number @/@o is  successively approximated by rational 
fractions. The DOS for rational flux per unit cell, Q/@o = p f q .  of a square lattice with 
nearest-neighbour electron hopping has also been calculated analytically for the first time 
in [7]. The results of this work were used recently in the study of electronic diamagnetism 
in ZD lattices [8,9]. 

The present paper is devoted to the energy spectrum calculations within the frame of 
a certain 2D model lattice that assumes an exponential form of inter-site overlap integrals. 
The plan of the paper is as follows. In section 2, a brief description of the transfermatrix 
method is given in the context of its application to the DOS calculation in the frame of the 
model of [7]. Section 3 contains the exact transfer-matrix derivation of the DOS for a Bloch 
electron on a 2D lattice with exponentially decreasing, as a function of inter-site distance, 
overlap integrals, provided that magnetic flux through a unit cell is a rational fraction of 
the flux quantum 00. Section 4 deals with a generalization of the model to the case of a 
ZD periodic set of parallel atomic chains. The DOS of such a system is also examined in 
this section. Section 5 is devoted to the quasiclassical analysis of the energy spectrum of 
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the model adopted in the previous section. An appropriate quantization rule is obtained and 
the Landau band energy spectrum is found in the low-flux limit for an arbitrary electron 
dlspersion telation along the chains. In conclusion a discussion on possible applications of 
the obtained results is presented. 

2. The DOS for a 2D lattice with nearest-site electron hopping 

In the present section the method of calculation of the DOS, utilized in [7], is sIightly 
reformulated on the basis of the transfer-matrix approach, which makes it possible to 
generalize calculations to the case of a 2D lattice with long-range electron hopping. Such 
calculations are done below in a model with exponentially decreasing, as a function of 
inter-site distance, overlap integrals. 

The Hamiltonian of a single electron in a 2D square lattice with nearest-neighbour 
hopping is given by 

H = 2t[2 - cos(p,a/h) - cos(pya/k)]. (1) 

Here I is the overlap integral between the nearest sites, a is the lattice constant and p X . ,  
are momentum projections on the axes X and Y respectively. 

The corresponding Schrtjdinger equation H q ( x ,  y )  = E\U(x, y )  in an external 
perpendicular magnetic field E in the Landau gauge A = B(0,  X, 0) can be written, after 
Peierls substitution P + P - eA/c,  in the well known form of Harper's equation 

t [ f ( n  + 1) + f(n - 0 1  = [ E  - E h  v)lf(n) 

E(n,  U) = 4t - 2tcos(u - bn@P/Oo).  

(2) 

(3) 

Here the wavefunction f ( x )  and discrete variables n and n' have been introduced by the 
relationships: Y(x, y )  = exp(ip,y/h)f(x), x = an,  y =on',  U = p y a / h  and 0 = Ba'. In 
the case of a rational flux per unit cell, Q/Oo = p / q ,  one can easily solve equation (2)  in 
different ways. For the sake of the following calculations it  is useful to introduce a transfer 
matrix 

Equation (2) can now be written in the matrix form 

Since E(nv)  as a function of ti has period q, we arrive at the following dispersion equation 
after a small amount of standard manipulations 

cos(k,a) = f SpT(E) (6) 

where T ( E )  = T, (E)%(E) .  . . T,(E). The quantity T(E) is also a function of v = k,a. 
Owing to the obvious symmetry relation kx S k,, the dependence of  T(E) on k,a should 
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be identical to that given by equation (6), since, after substitution X % Y, we alternatively 
arrive at equation (6), but this time with cos(&,a) on the lefl-hand side. Thus, the summation . .  
of both equations yields 

(7) 2cos(kxa) + 2cos(k,a) = P,(E) 

where 

P q ( E )  = SP[TI(E)TZ(E), , , Tq(E)lud (8) 

is a polynomial of degree q in E. The proof of the above statement is also given in [7]. 
The DOS g(E) *en can be calculated with the help of the standard definition 

. .  

Substituting (7) into (9) g d  performing injegration, we have 

g ( E )  = ( 1 / 2 ? r 2 q ) l d ~ u ( ~ ) / d ~ I ~ ‘ [ ~ l P , o I I  (10) 

where K’(k)  = K[(1 - k2)”2], and K ( k )  is a complete elliptic integral of the first kind. In 
essence, this is exactly the result of [7], except that the polynomial P,(E) in equation (10) 
is determined, according to (8), as a trace of the product of q matrices T, (E) ,  whereas in [7] 
this polynomial is presented as a determinant of some 4 x q  matrix. For lattice with nearest- 
site electron hopping, both the above ways of P,,(e) calculation require approximately equal 
effort. If, however, one takes into consideration electron hopping to more remote sites, the 
amount of calculation necessary to obtain polynomial P,(E) from the determinant will grow 
enormously and employment of the formula (8) becomes much more preferable. 

3. The DOS for ZD long-raqge hopping model lattice 

Consider a 2~ lattice with a rectangular unit cell of sides a, and a,, and described by the 
Hamiltonian 

H = H ( P , )  + H ( P J  (11) 

where 

The overlap integrals t ( m j )  are taken here in the exponentially decreasing form with respect 
to the distance Imjlaj between the lattice sites 

t(mj) = toexp(-qlmjlaj). (13) 

When an external perpendicular magnetic field B is applied, one can, proceeding in the same 
fashion as before, obtain a more general equation than equation (2)  for the wavefunction 
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The on-site energy E(n,  U) here is determined by the sum 

~ ( n ,  U) = Ctoexp[-qa lm, l+  i(u - 2nn@/@o)my]. (15) 
m, 

Performing summation, we have 

E(n,  U) = to sinh(qa)[cosh(qa) - cos(u - 2nn@/Q0)]-'. (16) 

Indices at aj are omitted in equations (14)-(16) and in what follows. 
In the case q a  >> I ,  one can neglect electron hopping beyond the nearest-neighbour 

sites, and arrive at Harper's equation (2) with f = foexp(-qa) and E(n, U) = 
2toexp(-qa) cos(u - 2nn@/@o). In the general case of an arbitrary qa ,  the model under 
study permits electron inter-site hopping to neighbours of all orders. As shown in the 
author's papers [10 , l l ] ,  equation (14) can be solved easily with the help of a transfer- 
matrix approach. Proceeding along the lines of [IO. 1 I], one can represent the solution of 
equation (14) in the form 

f ( n )  = A h )  + B(n)  (17) 

where the quantities A(n) and B(n) are determined by the right-hand sides of equations 

T,(E)= 

f (n ,  U) = to[E - E ( n ,  U) -to]-'. (20) 

Now, one can readily obtain the recurrence equations for A ( n )  and B(n), which may be 
written in the following matrix form 

[ I  - t ( n ,  u)]eq" : - t ( n ,  u)eq" ............... j . . . . . . . . . . I . . . .  

f (n ,  u)e-91i ; [ I  + f (n ,  u)]e-q" 

The transfer matrix To@) has the form 

and A'(n) = A(n) / t (n .  U) and B'(n) = B(n) / t (n ,  U). 

Since for rational flux through the unit cell, @/@o = p / G ,  the energy E(n,  U) of 
equation (15) is a periodic function of n with period 4, one can, by trivial repetition of the 
arguments that hold for the above derivation of the DOS, check that g(E) for the present 
model is given again by equation (IO). The only difference is that in the model under 
consideration the transfer matrix T.(E) is defined by equation (22). The energy bands 
location is determined by the condition IP+(E)I < 4. The number of bands depends on the 
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degree of the polynomial P q ( E ) ,  which, in turn, is fixed by the value of the rational fraction 
pig. Within each of the permitted energy bands the DOS g ( E )  has a well known ‘pagoda’ 
shape with a logarithmic singularity in the middle of the band. 

As for possible applications of the considered model, it should be noted that to a greater 
or lesser degree long-range correlations are present in every physical system. Nonetheless, 
it is customary to explore problems related to 2D Bloch electrons in a uniform magnetic 
field within the frame of a tight-binding Hamiltonian. Moreover, this approach is often 
justified on the grounds that overlap integrals are exponentially decreasing functions of 
inter-site distance, so that one can neglect electron hopping beyond the nearest neighbours 
[ 121. The result obtained above shows that a model with exponentially decreasing overlap 
integrals in essence is not much more complicated than a tight-binding one, and can 
be readily solved exactly with the help of a transfer-matrix technique, at least in the 
rational flux case. Meanwhile, some problems, such as, for example, plasma oscillations in 
superlattices in a magnetic field, should be treated beyond the nearest-neighbour correlation 
approach. The exponential form of interlayer correlations in this system stems from the 
long-range Coulomb interactions across the layers [ 111. Another typical example is with 
superconducting superlattices and superstructures in which long-range correlations between 
layers arise due to the sharp growth of the coherence length when temperature approaches 
the critical one, T,. Such enhancement of the interlayer correlation range near T, manifests 
itself i n  a well known dimensional 3D to 2D crossover, which takes place with increase 
of external magnetic field [13]. An analogous phenomenon holds for ZD superconducting 
superstructures in a magnetic field. Inasmuch, as in general, inter-site correlations do not 
need to be exactly of the exponential form, the most adequate approach to the discussed 
problem should be based on the concept of an arbitrary dispersion relation as is usual in 
the standard electron theory of metals [14].  As a first step towards this, in the next section 
we will consider a 2D lattice model in which an arbitrary dispersion relation of electrons in 
one of the two dimensions is assumed. 

4. Generalization of the method to a 2D anisotropic lattice 

The transfer-matrix approach developed in the previous sections can be readily modified for 
the case of a ZD regular anisotropic structure. To see this, consider a 2D Hamiltonian of the 
form 

H = 2t [ l  - cos(p,a/h)l + c(p,b/h)]. (23) 

The first term on the right-hand side of this equation is the usual tight-binding Hamiltonian 
describing electron hopping between chains, whereas the periodic function t(p,b/h) = 
~(p,b/Fi +Zir )  refers to an arbitrary electron dispersion in chains assumed to be parallel to 
the Y axis. After separation of variables in a way described in section 2, we have 

( 2 4  t f ( n  + 1) + t f ( n  - 1) + [ E  - 21 -<(U - 2 z n O / @ o ) ] f ( n )  = 0. 

Here U = p,b/h. This equation generalizes Harper’s equation since it depends on an 
arbitrary function E ( v ) ,  which in the original Harper’s equation (2) equals 2r[l - cos(u - 
2irna/@o)]. Equation (24), after the fashion of section 2, can be written in the matrix form 
(5) with the transfer matrix (4) in which the on-site energy should be taken in the form 

E(n ,  v )  = 2 + t ( v  - ZirnO/Oo). (2) 
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The principal difference between the case under consideration and that of section 2 emanates 
from the X-Y anisotropy and results in the loss of symmetry relation p x  f py. The 
latter means that equation (7) does not hold true in this case and that direct integration in 
equation (9) is impossible. Nevertheless, with the help of equation (6) the DOS (9) can be 
represented in the form 

The polynomial P,,(E, U) entering equation (26) is 

Py ( E ,  U) = SP[Tl(E, W ( E ,  4.. ’ TqW, (27) 

and the transfer matrix T,(E. U) is given by equations (4) and (U). Since for rational flux, 
Q/Qo = p / s ,  the function Ps(E,  v) is a polynomial of degrees in E ,  the DOS (26) consists 
of s bands with boundaries determined by the condition 4 > ?, (E,  U). 

Unfortunately, one cannot complete integration on U in equation (26) without specific 
choice of the dispersion relation E ( v ) .  As a concrete example of how equation (26) operates, 
consider again a model with exponential correlations between electrons on lattice sites (13), 
but this time assume that such correlatins hold only within the chains, which means that 
€ ( U )  should be taken in the form given by equation (16). For the simplest case of rational 
flux, Q/Qo = 1, equations (26) and (16), after substitution x = cos U, yield 

(28) 
1 ’  

2nt -1  
g ( E )  = - /” [(l  -x2)Q(E,x)]i’z[cosh(qb) - x ] d x  

where 

x+ = cosh(qb) + sinh(qb)/(4 - E) 

x- = cosh(qb) - sinh(qb)/h. 

(30) 

(31) 

The actual limits of integration in equation (28) are determined by the two conditions: 
(1 - x)’Q(E, x )  0 and 1x1 < 1. A simple analysis shows that the top and the bottom 
edges of the energy band are E,, = 4 + coth y and = tanh y respectively, whereas the 
analytic form of the DOS within the band is different for different values of q b  and E .  (Here 
and in what follows y = qb/2.) Three cases should be distinguished: (i) tanhy > 1/4, 
(ii) 6 - 2 < tanh y e 1/4, and (iii) 0 e tanh y < & - 2. For each of these cases the 
encrgy band is divided into four sections by three points el = coth y. cZ = 4 + coth y and 
€3 = 4, of which the first two are roots of the equations .x-(Ei) = 1 and x + ( E ~ )  = -1. The 
hierarchy of energies for each of the above cases is different and correspondingly equal to: 
t m i n  < €1 e 4 e €2 < for case (i), €,,,in e 4 e E, 4 62 < cman for case (ii), and 
emin e 4 < 62 < E, < E,, for case (iii). As long as E belongs to one of these energy 
intervals, the corresponding hierarchy between the four roots 1, -1. x+(E) and % - ( E )  of the 
equation (1  - x2)Q(E, x) = 0 remains fixed. On the other hand, the relative positions of 
these roots define the actual limits of integration in equation (28), and change each time E 
transfers from one interval into another. Therefore, the DOS is given by 12 different analytic 
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expressions For every energy interval of the above three cases (i)-(iii). Considering here 
for brevity only case (i), and performing the integration in equation (28), we have 

g ( E )  = ZnZ(E, y)[lE(4t  - E)]]-’/‘, (32) 

The function Z(E, y )  can be expressed in terms of elliptic integrals of the first and third 
kinds, and has a form varying from one energy interval to another. m e n  €mirl < E < 4 

I ( E ,  y )  =a[(coshy  - a ) F ( r / Z , k ) + ( a  - d ) l I ( x / Z , P , k ) l  (33) 

where II = 2 / [ (a  - c)(b - d)]”’ and P = (d - c ) / ( a  - c) .  It is also assumed 
that a > b > c > d whereas specific choice of these constants and parameter k 
depends on E .  If <,,,in < E < E ] ,  then a = x+,  b = 1, c = x-,  d = -1, and 
k = { [ ( x +  - l ) ( x -  - I ) ] / Z ( x +  - x - ) ) ~ / ’ .  If €1 < E < 4, then symbols in (33) should 
be redenoted in the following way: b + c,  c + 6 ,  k + I l k .  

For the energy interval 4 < E < E,, the function [ ( E ,  y )  is given by 

Z(E, y )  = @[(cosh y - d ) F ( n / Z .  k )  + (d - c ) l I ( x / Z ,  6, k ) ]  (34) 

where 6 = ( b  - c ) / ( b  - d). The other constants entering equation (34) are: a = x ,  b = 1, 
c = - 1  , d =  x+ and k = {Z(L -I+)/[& + 1)(1 - x + ) ] ) ~ / * ,  if 4 < 6 < e,,,=; and when 
€2 < E 6 E”, the following substitutions should be done: c + d ,  d =+ c ,  k =+ I l k .  If 
E = 4, then the DOS is 

g ( E )  = (T/Znr)[(coshy - a ) F ( n / Z .  k) - (a + I) l / ’E(n/2,  k ) ]  (35) 

with a = cosh y - $ sinh y .  r = [sinh y(a  + I)]-’/’ and k = [2/(a + I ) ] ’ / ’ .  
The logarithmic Van Hove singularities in the DOS are typical features of any 2~ 

system. Their locations in the considered system are determined by the quadratic equation 
k ( E )  = I ,  which has different coefficients when E belongs to different energy intervals. The 
corresponding solutions are trivial though rather cumbersome, and therefore there is no need 
to present them here in an explicit form. 

The above analysis shows that, although in the model under consideration g ( E )  can be 
obtained in an explicit analytic form, the corresponding calculations are rather tedious even 
in the simplest case. so that for practical purposes a numerical computation of the DOS on 
the basis of equation (28) appears more preferable. Nevertheless, analytic consideration of 
the Landau energy spectrum can be done within the quasiclassical approach even for a more 
general ZD model in which an arbitrary dispersion relation along one of the two directions 
is assumed. 

5. Landau bands in a ZD strongly anisotropic lattice 

Now turn back to equation (24) and consider the low-flux limit, which means that 
O/@Q << 1. Of course, one can readily make flux O small compared with flux quantum 
Oo just by application of a small field B ,  but the point is that even in the highest available 
fields of the order 10-100 T the ratio O/@o in conventional crystals is extremely small, 
@/@a - 10-3-10-4. The latter is due to the fact that an enormous field of the order 
lo5 T should be applied to the crystal lattice to obtain total flux through a unit cell equal 
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to Qo. The smallness of the parameter @e/% gives ground for the following power series 
expansion 

€(U - &n@/Qo) Y €(U) - c’(u)2xn@J@o + fd‘ (u) (21rn0/4)~  + . . . . 
Keeping in equation (24) terms only up to the first order in 2xnQ/Qo,  we have 

(36) 

t f ( n  + 1) + t j ( n  - I )  + [ E  - Z ~ E ( U )  - h Q ( ~ ) n ] f ( n )  = 0. (37) 

Here Q = eBjmc is the cyclotron frequency, and m = m ( u )  stands for the effective mass, 
which depends through the parameter U = p,b/h on position at the Fermi surface. For m-I 
we have: m - l ( u )  = m;’u(u),  where m, = Az/ubt and u ( u )  = ~ ( u ) / t .  In conventional 
metals the width of the conduction band is of the order off = Pj/2m, with P, Y A/aB and 
m the eleclron mass CUB is the Bohr radius). The estimation of the mass m, in this case 
yields m, Y m, while u ( u )  is of the order of unity or less. 

The energy spectrum given by equation (37) is well known in the literature as the 
WannierStark ladder since equation (37) corresponds exactly to that of a tight-binding 
chain in a uniform electric field [IS]. In analogy with the WannierStark ladder the energy 
spectrum of the Schradinger equation (37) consists of a periodic set of discrcte levels with 
separation AR, which is nothing but the Landau spectrum 

&(U) = 2t + € ( V )  +frR(u)n. (38) 

The analogy between the WannierStark ladder and the Landau spectrum is, however, not 
complete because the \VannierStark ladder is infinite in both directions whereas the Landau 
spectrum is limited from the bottom. To see this in more detail, consider the spectrum just 
above the bottom of the energy band. In this c s e  €’(U) = 0 and a term proportional to 0’ 
should be taken into consideration in equation (36). So, after substitution of equation (36) 
into equation (24), we arrive at the following equation: 

t f ( n  + 1) + f j ( n  - 1) + [ E  - 2t +<(U) - ( ~ n ) * ] f ( n )  = 0 (39) 

where 

0 = €“(UO)l/2J5rQ/QO. (40) 

The derivative in equation (40) i s  taken in the minimum ~0 of the dispersion relation €(U). 
To solve the difference equation (39). it is convenient to introduce a function @ ( x )  

depending on some dimensionless variable x :  

In terms of @ ( x )  the difference equation (39) can be written as a differential one 

(42) 

This equation has the form of a Schrodinger one for a ‘particle’ moving in the potential 
U ( x )  = 2t(l - cosx). Its energy spectrum may be readily found with the help of 

d2@ -2- +2I(1  - COSX)@ = [ E  - €(U)]+. 
d x 2  
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the quasiclassical approach. Thus, after some standard manipulations we obtain from 
equation (42) a quasiclassical quantization rule 

$k (x ,y )dx  = J ~ Y )  (43) 

with k ( x )  = [ (y-  1 +cosx)]~/* and y = [E+c(v)]/2t. The right-hand side of equation (43) 
is given by 

J ( n ,  y )  = (2no/t1'2){(n + f) + [(-~)"/n]sin-'[~cos(pu)]}. (44) 

Here p is a wavevector in direction across the chains, and W stands for the quasiclassical 
tunnelling probability under the crest of the periodic potential U ( x )  

W = exp(-H,/H). (45) 

The characteristic magnetic field H* determines the scale of fields such that for H > H, 
the discrete Landau levels are broadened into bands. The field H* is given by 

Here 0 = [ t / ~ " ( v o ) ] ' ~  and f x o  are the turning points of the 'particle' in the potential V ( x ) .  
The integral (43) can be expressed in terms of complete elliptic integrals of the first and 
second kinds. 

$ Q x ,  Y )  dx = 16[(yZ - 1)F(n/2 ,  Y) + E(n/2, y)l. (47) 

Taking into account that for low-lying levels, in which we are interested, the parameter 
y << 1, and that in this limit the right-hand side of equation (47) is equal to Y Zny, we 
have 

E,(p) = E ( v ~ )  +fia{(n+ $)+ [(-~)"/n]sin-I[~cos(pa)lj. (48) 

The effective mass entering the cyclotron frequency in (48) is now given by m(v0) = m,/b'. 
Thus, one can see from equation (47) that the energy spectrum of the system under 

consideration consists of a set of equidistant Landau levels with separation ha2, which are 
broadened into Landau bands due to the lifting of their degeneracy on orbit centre position 
in a periodic 2D lattice. The width of these bands is proportional to the field-dependent 
tunnelling probability W ( H ) ,  which is of the same form as in coherent magnetic breakdown 
[161. 

6. Conclusion 

The energy spectrum of a 2D Bloch electron in a strong quantizing magnetic field is an 
old classical problem intimately connected with a number of applications i n  solid-state 
physics partially enumerated in the introduction. Although this problem has been extensively 
explored for the past decades, only a few exact results in this field are known. One of them 
is the simple analytic expression for the DOS given by Wannier et a1 [7] for a square lattice 



with a tight-binding electron Hamiltonian in the rational flux case. Only nearest-neighbour 
site correlations have been assumed in [7]. On the other hand, long-range correlations are 
ineviubly present in every physical system and in some cases (see above for details) should 
be taken into Consideration. In this connection the result of [7] is generalized in the third 
sectiqn of the present paper to the case of a 2D lattice model with exponentially decreasing, 
as a function of inter-site distance. overlap integrals. It was done on the basis of a transfer- 
matrix approach developed earlier in the problem of plasma oscillations in superlattices [Ill. 
The transfer-matrix approach proved to be useful also in the energy spectrum study of yet 
another 2D lattice madel. In this model, considered in the fourth section, a ZD lattice consists 
of a periodic set of parallel chains with arbitrary electron dispersion, which are correlated 
in the transverse directions by dint of nearest-neighbour electron hopping. Such a model to 
all appearances is applicable to organic conductors of the (TMTSF) zX family [I71 (TMTSF 
= tetramethyltetraselenafulvalene), which are layered crystals with layers consisting of a 
weakly correlated periodic set of organic conducting chains. In the rational flux case the 
DOS of this model depends on polynomials (27) and has an integral form (26) that permits 
one' to obtain an explicit expression for any specific form of dispersion relation <(U) and 
readily lends itself to numerical computations. For intra-chain overlap integrals that are 
exponentially decreasing with inter-site distance, the exact DOS in the rational flux case is 
expressed in terms of elliptic integrals (32). In the low-flux limit, i.e. when Q/Qpo << 1, 
the energy spectrum can be derived for arbitrary electron dispersion <(U). In this case the 
Schriidinger equation (37) takes the form of a difference equation, which is well known in 
the Wannier-Stark problem of an electron in a uniform electric field on a one-dimensional 
lattice. Such similarity makes it  possible to consider equidistant Landau spectrum (38), by 
ahaiogy with the Wannier-Stark ladder, as some sort of 'magnetic Wannier-Stark ladder'. 
A more detdled analysis of this analogy based on the Green functions technique will be 
published elsewhere. 

A simple quantization rule (43) is also derived for low-lying levels, with respect to the 
band bottom. This quantization rule yields an energy spectrum (48) composed of equidistant 
Landau levels broadened into bands whose width is proportional to the probability factor (45) 
similar to that of magnetic breakdown systems. 

In conclusion, two remarks on possible applications of the above results are in order. The 
first one is that the difference equation (39) also arises in the problem of the upper critical 
magdetic field, Hc2, calculated in a ID superconducting superlattice [18]. The physical 
reasoh for this lies in the fact that Hc2 is determined by the lowest edge of the Landau 
spectrum of a 'particle' in an external magnetic field, as is well known in the theory of 
superconductiGity. The unconventional, from the Bardeen-Cooper-Schrieffer (BCS) theory 
of superconductivity point of view, non-linear temperature behaviour of H,z(T) ,  observed in 
ID superlattices [13], is, in the long F n ,  due to non-linearities in H of the lowermost Landau 
band edge. Since the above results pertain to the 2D geometry, a favourable opportunity 
appears to explain non-linearities in &(T)  of a 2D superstructure in the same fashion as 
in a, ID superc,onducing superlattice. In particular, the so-called ,positive curvature of ttie 
&(T) in a zD superconducting superlattice made of mismatched dislocation network in, a 
PbTeRbS multilayer 1191 can be explained in this way. The corresponding results will be 
published elsewhere. 

The secon3 remark addresses the problem of a magnetic-field-induced series of structural 
Peierls-like phase transitions periodic in inverse field, which has been observed i n  2D organic 
conductors of the ( T M T S F ) ~ ~  family [ 171. A very similar phenomenon was predicted recently 
in periodic 2D .magnetic breakdown structures [ZO], and in, a ZD conductor subjected to a 
perpendicular quantizing magnetic field and simultaneously modulated by a ID periodic 
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potential lying in the plane of this ZD conductor 1211. Since, as was pointed out above, he 
energy spectrum (48) is applicable to 2D organic conductors, and, on the other hand, it is 
of the same type as that exploited in [ZO, 211, an intriguing opportunity appears to explain 
a cascade of Peierls-like structural phase transitions in organic conductors on tlie basis of 
the Landau band energy spkctrum found in this paper. 

Of course, the presentkd list of possible applications is far from being complete and 
can be readily extended because maiy problems in condensed matter physics are intimately 
related to the problem of a Bloch electron on a ZD lattice. 
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