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Energy spectrum of a Bloch electron on a two-dimensional
lattice with long-range hopping in a magnetic field
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Department of Physics, Kharkov State University, Kharkov, 310077, Ukraine

Received 4 December 1993

Abstract. The density of states (D0S) of the Bloch electron on a two-dimensional (2D} lattice
in an external perpendicular magnetic field is exactly caleulated in the case of a rational flux
through an elementary cell in the model with exponentially decreasing, as a function of inter-site
spacing, overlap integrals. A generalization of this model to the case of an array of parallel
chains with tight-binding correlations between them is considered, and the appropriate Qs is
calculated. A gquasiclassical quantization rule is obtained for arbitrary electron dispersion along
the chains 1n the low-flux limit, which yields, for energies near the band bottom, Landan levels
that broaden into bands of width proportional to a magnetic breakdown-like probability factor,
The analogy between the Wannier-Stark ladder and the Landau spectrum for a Bloch electron
on a 20 lottice is considered. Possible applications to organic conductors and superconducting
superlattices are discussed.

i. Introduction

The problem of the electron energy spectrum on a two-dimensional (2D) lattice has been in
the spotlight during the past decades since it has many applications in solid-state physics:
in superconductor networks {1}, in the quantum Hall effect [2], in anyon superconductivity
[3], in flux phases of the Hubbard model {4], and so on. Beginning with the works of Azbel
[5] and Hofstadter [6] it is well known that the energy spectrum of electrons in a 2D lattice
depends strongly on the ratio &/ &y, where @ is the flux per unit cell and ®y = he/e is the
flux quantum. For the irrational flux case, the energy spectrum is of fractal nature, whereas
the integrated density of states (DOS), as was first pointed out in [7], approaches some
regular curve when the irrational number /4@y is successively approximated by rational
fractions. The DOS for rational flux per unit cell, &/dy = p/g, of a square lattice with
nearest-neighbour electron hopping has also been calculated analytically for the first time
in [7]. The results of this work were used recently in the study of electronic diamagnetism
in 2D lattices [8,9].

The present paper is devoted to the energy spectrum calculations within the frame of
a certain 2D model lattice that assumes an exponential form of inter-site overlap integrals.
The plan of the paper is as follows. In section 2, a brief description of the transfer-matrix
method is given in the context of its application to the DOS calculation in the frame of the
modei of [7]. Section 3 contains the exact iransfer-matrix derivation of the DOS for a Bloch
electron on a 2D lattice with exponentially decreasing, as a function of inter-site distance,
overlap integrals, provided that magnetic flux through a unit cell is a rational fraction of
the flux quantum Py, Section 4 deals with a generalization of the model to the case of a
2D periodic set of parallef atomic chains. The DOS of such a system is also examined in
this section. Section 5 is devoted to the quasiclassical analysis of the energy spectrum of
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the mode} adopted in the previous section. An appropriate quantization rule is obtained and
the Landau band energy spectrum is found in the low-flux limit for an arbitrary electron
dispersion relation along the chains. In conclusion a discussion on possible applications of
the obtained results is presented.

2. The poS for a 2D latiice with nearest-site electron hopping

In the present section the method of calculation of the DOS, utilized in [7], is slightly
reformulated on the basis of the transfer-mairix approach, which makes it possible to
generalize cilculations to the case of a 2D lattice with long-range electron hopping. Such
calculations are done below in a model with exponentially decreasing, as a function of
inter-site distance, overlap integrals.

The Hamiltonian of a single electron in a 2D square lattice with nearest-neighbour
hopping is given by

H = 2t[2 — cos(pra/h) — cos(pya/h)]. (D

Here ¢ is the overlap integral between the nearest sites, @ is the lattice constant and py,
are momentum projections on the axes X and Y respectively.

The corresponding Schridinger equation HW(x,y) = EW¥(x,y) in an external
perpendicular magnetic field B in the Landan gauge A = B(0, X, Q) can be written, after
Peierls substitution P — P —¢A/c, in the well known form of Harper’s equation

t{fin+ D+ fin—1}] =[E - En,if(n) (2)
E{n,v) =4t — 2t cos(v — 2rnd/ dy). 3

Here the wavefunction f{x) and discrete variables n and »' have been introduced by the
relationships: W (x, y) = exp{ip,y/R)f(x), x =an,y=an’,v=pa/hand = Ba?. In
the cage of a rational fiux per unit cell, /Dy = p/g, one can sasily solve equation (2) in
different ways. For the sake of the following calculations it is useful to introduce a transfer
matrix

0 ~1
T(E)y=]-"---- ............... . (4)
—1 :[E(n,v) - El/t

Equation (2} can now be written in the matrix form

foy | _ TH(E)]I”(H +1|

Fa+ 1) £(n) ©)

Since E(nv) as a function of r has period g, we arrive at the following dispersion equation
after a small amount of standard manipulations

cos(kza) = 1 SpT(E) 6

where T(E) = N{E)TA(E)...T,(E). The quantity T(E) is also a function of v = k,a.
Owing to the obvious symmetry relation k; < ky, the dependence of T(E) on k,a should
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be identical to that given by equation (6), since, after substitution X 5 Y, we alternatively
arrive at equation (6), but this time with cos(k,a) on the leff-hand side. Thus, the summation
of both equations yields

2cos{ka) + 2 cos(kya) = Py (E) 7
where

Py(E) = SpTHE)TAE) ... Tu(E)lv=0 8

is a polynomial of degree ¢ in E. The proof of the above statement is also given m [71.
The DOS g(E) then can be calculated with the help of the standard definition -

1 dk,
g(E) = ZqufU

dE
Substituting (7) into (9) and performing integration, we have

d(kya). )

8(E) = (1/22° )|dP,(E)/dE|K (3] P(E)I] (10)

where K’ (k) = K[(1 —k%)!/?], and K (k) is a complete elliptic integral of the first kind. In
essence, this is exactly the result of [7], except that the polynomial F,(E) in equation (10)
is determined, acgording to (8), as a trace of the product of g matrices T, (E), whereas in [7]
this polynomial is presented as a determinant of some g x ¢ matrix. For lattices with nearest-
site electron hopping, both the above ways of P, (E) calculation require approximately equal
effort. If, however, one takes into consideration glectron hopping to more remote sites, the
amount of calculation necessary to obtain polynomial £, (E) from the determinant will grow
enormously and employment of the formula (8) becomes much more preferable.

3. The pos for 2D Jong-range hopping model lattice

Consider a 2D lattice with a rectangular unit cell of sides a, and a,, and described by the
Hamiltonian

H = H(P)+ H(P) (11)
where
H(P) =Y t(mp)expliPam)) /Rl (12)

The overlap integrals ¢ (m;) are taken here in the exponentially decreasing form with respect
to the distance |m;|a; between the lattice sites

t(m;) = foexp(~qlm;la;). (13

When an external perpendicular magnetic field B is applied, one can, proceeding in the same
fashion as before, obtain a more general equation than equation (2) for the wavefunction

> wexp(—qla’ — nla) f(n') = [E ~ E(n, v)1f (n). (14)
n'#n
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The on-site energy E(r, v) here is determined by the sum

E(n,v) =Y _toexpl—qalm,| +i(v — 2znd/do)m,]. (15)

Performing summation, we have
E(n, v) = tgsinh{ga)[cosh(ga) — cos(v — 2rnd/dg)] ™. (16)

Indices at @; are omitted in equations (14)-(16) and in what follows.

In the case ga >» 1, one can neglect electron hopping beyond the nearest-neighbour
sites, and amrive at Harper’s equation (2) with t = fexp(—ga) and E(n,v) =
2ty exp(—ga) cos{v — Zrn®/Dy). In the general case of an arbitrary ga, the model under
study permits electron inter-site hopping to neighbours of all orders. As shown in the
author’s papers [10, 11], equation (14) can be solved casily with the help of a transfer-
matrix approach. Proceeding along the lines of [10, 11], one can represent the solution of
equation (14) in the form

f(n) = A(n} + B(n) 17

where the quantities A(n) and B(n) are determined by the right-hand sides of equations

A(n) =t(n, v) Zexp[-—qa(n’ —)]fn"D {18)
n'zn
B(n,v) = t(n,) ) expl—ga(n — ) f (). (19)

Symbol ¢ (n, v) stands for
t(n, U) = IO[E - E(n, l)) - rO]"l' (20)

Now, one can readily obtain the recurrence equations for A(n) and B(n), which may be
written in the following matrix form

Alln+ 1)1 _ A'tn)
‘B’(ﬂ.-{- 1) = TB(E) I B'(ﬂ) * (21)
The transfer matrix T,(E} has the form
1—1(n, 94 1 —t(n, v)ed®
T |t G s e ks § -

tin, v)e~9" [1+¢{m, v)]e™9

and A'(n) = A(n)/t(n,v) and B'(n) = B(n)/t(n, v).

Since for rational flux through the unit cell, &/®y = p/4, the energy E(n,v) of
equation (15) is a periodic function of # with period 4, one can, by trivial repetition of the
arguments that hold for the above derivation of the DOS, check that g(E) for the present
model is given again by equation (10). The only difference is that in the model under
consideration the transfer matrix T,(E) is defined by equation (22). The energy bands
location is determined by the condition | P;(E)| € 4. The number of bands depends on the
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degree of the polynomial P;(£), which, in turn, is fixed by the value of the rational fraction
p/g. Within each of the permitted energy bands the DOS g(E) has a well known ‘pagoda’
shape with a logarithmic singularity in the middle of the band.

As for possible applications of the considered model, it should be noted that to a greater
or lesser degree long-range correlations are present in every physical system. Nonetheless,
it is customary to explore problems related to 2D Bloch electrons in a uniforrns magnetic
field within the frame of a tight-binding Hamiltonian. Moreover, this approach is often
justified on the grounds that overlap integrals are exponentially decreasing functions of
inter-site distance, so that one can neglect electron hopping beyond the nearest neighbours
[12]. The result obtained above shows that 2 model with exponentially decreasing overlap
integrals in essence is not much more complicated than a tight-binding one, and can
be readily solved exactly with the help of a transfer-matrix technique, at least in the
rational flux case. Meanwhile, some problems, such as, for example, plasma oscillations in
superlattices in a magnetic field, should be treated beyond the nearest-neighbour correlation
approach. The exponential form of interlayer correlations in this system stems from the
long-range Coulomb interactions across the layers [11]. Another typical example is with
superconducting superlattices and superstroctures in which long-range correlations between
layers arise due to the sharp growth of the coherence length when temperature approaches
the critical one, ;. Such enhancement of the interlayer correlation range near 7, manifests
itself in a well known dimensional 3D o 2D crossover, which takes place with increase
of external magnetic field [13]. An analogous phenomenon holds for 2D superconducting
superstructures in a magnetic field. Inasmuch, as in general, inter-site correlations do not
need to be exactly of the exponential form, the most adequate approach to the discussed
problem should be based on the concept of an arbitrary dispersion relation as is usual in
the standard electron theory of metals [14]. As a first step towards this, in the next section
we will consider a 2D lattice model in which an arbitrary dispersion relation of electrons in
one of the two dimensions is assumed.

4. Generalization of the method to a 2D anisotropic lattice

The transfer-matrix approach developed in the previous sections can be readily modified for
the case of a 2D regular anisotropic structure. To see this, consider a 20 Hamiltonian of the
form

H =2¢[1 — cos(pra/m)] + €(pyb/B)). (23)

The first term on the right-hand side of this equation is the usual tight-binding Hamiltonian
describing electron hopping between chains, whereas the periodic function €(p,b/h) =
€(pyb/h+ 2m) refers to an arbitrary electron dispersion in chains assumed to be parallei to
the ¥ axis. After separation of variables in a way described in section 2, we have

tfa+ D +tfr— D+ [E -2t —e{v—2mnd/P)1f(n) =0. (24)
Here v = p,b/h. This equation generalizes Harper’s equation since it depends on an
arbitrary function (v}, which in the original Harper's equation (2} equals 2¢[]1 — cos(v —

2nn®/®p)). Equation (24), after the fashion of section 2, can be written in the matrix form
(3) with the transfer matrix (4) in which the on-site energy should be taken in the form

E(n,v) =2t + (v — 2rnd/Dy). (23)
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The principal difference between the case under consideration and that of section 2 ¢manates
from the X-Y apisotropy and results in the loss of symmetry relation p; S py. The
latter means that equation (7) does not hold true in this case and that direct integration in
equation (9) is impossible. Nevertheless, with the help of equation (6) the pOs (9) can be
represented in the form '

" i AP (E, V)
— _ p? 12|58, V)
8B = o [ - p2E 0 ) 4 (26)
The polynomial P, (E, v) entering equation (26) is
Py(E,v) = SplTy(E,v)Ty(E,v)... Ty(E,v)] @7)

and the transfer matrix T,(E, v) is given by equations (4) and (25). Since for rational fiux,
P/ Py = p/s, the function F,(E, v) is a polynomial of degree s in E, the DOS (26) consists
of 5 bands with boundaries determined by the condition 4 = P, (E, v).

Unfortunately, one cannot complete integration on v in equation (26) without specific
choice of the dispersion relation €(v). As a concrete example of how equation (26) operates,
consider again a model with exponential correlations between electrons on lattice sites (13),
but this time assume that such correlatins hold only within the chains, which means that
€{v) should be taken in the form given by equation (16). For the simplest case of rational
flux, &/ Py = 1, equations (26) and {16), after substitution x = cos v, yield

g(B) = 5% ]_ :[(1 — x*)Q(E, x)1"*[cosh(gb) — x]dx (28)
where

O(E, x) =e{d —e)x — x)(x —x_) ce=E/t (29)

x4+ = cosh(gh) + sinh(gh) /(4 — €) (30)

x.. = cosh(gb) — sinh{gb)/¢. (31)

The actual limits of integration in equation (28) are determined by the two conditions:
(1~-xYQ(E,x) > 0 and |x] < 1. A simple analysis shows that the top and the bottom
edges of the energy band are €y, = 4 -~ coth ¥ and €, = tanh y respectively, whereas the
analytic form of the DOS within the band is different for different values of gb and ¢. (Here
and in what follows ¥ = ¢b/2.) Three cases should be distinguished: (i) tanhy > 1/4,
(i) ~/5 — 2 < tanhy < 1/4, and (iii) 0 < tanhy < +/5 — 2. For each of these cases the
encrgy band is divided into four sections by three points €) = cothy, &, =4 + cothy and
€3 = 4, of which the first two are roots of the equations x_(¢1} = 1 and x,.(g2) = —1. The
hierarchy of energies for each of the above cases is different and correspondingly equal to:
€min S €1 <4 < € £ €y for case (i), €min < 4 < €p < 63 & €y for case (ii), and
€mn < 4 < €1 < €] K € TOr case (ii). As long as ¢ belongs to one of these energy
intervals, the corresponding hierarchy between the four roots 1, —1, x1{¢) and x_{¢) of the
equation (1 — x?)Q(E, x) = 0 remains fixed. On the other hand, the relative positions of
these roots define the actual limits of integration in equation (28), and change each time ¢
transfers from one interval into another, Therefore, the DOS is given by 12 different analytic
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expressions for every energy interval of the above three cases {i)—(iii). Considering here
for brevity only case (i), and performing the integration in equation (28), we have

g(E) =2mI(E,y)[|E@t — E)|]7'/, (32)

The function I{E, y) can be expressed in terms of elliptic integrals of the first and third
kinds, and has a form varying from one energy interval to another. When emip <€ < 4

I(E,y) =wl(coshy —a)F(z/2,k} + (a — )1(% /2, B, %)] (33)

where ¢ = 2/[{(a — )b — d))? and 8 = (d — ¢&)/(@a — ¢). It is also assumed
that @ > b > ¢ > d whereas specific choice of these constants and parameter k
depends on €. If ¢y € € € ¢, thena = x., b =1, ¢ = x_, d = -1, and
k= {[{xy — D{xo — 1)]/20x4p — x )2 If € € ¢ < 4, then symbols in (33) should
be redenoted in the following way: b = ¢, c = b, k = 1/k.

For the energy interval 4 < ¢ < €y the function J{E, y) is given by

HE,v}y=«l(coshy —d)F(m/2, k) + (d — c}1(n/2, 8, k)] (34)

where § = (b — ¢)/(b — d). The other constants entering equation (34) are: a = x, b =1,
c=—1,d=ux.and k = {200_ — x.)/[(x= + {1 — x)I}2, if 4 < € € €muax; and when
€2 < € K €yax, the following substitutions should be done: ¢ = d,d = ¢, k= 1/k. If
€ = 4, then the DOS is

g(E) = (z/2xt)[(cashy — a)F ()2, k) — (a + 1) *E (% /2, k)] (35)

with @ = coshy — sinhy, v = [sinhy(a -+ 1)]"'/? and & = [2/(a + 1)]'/%

The logarithmic Van Hove singularities in the DOS are typical features of any 2D
system. Their locations in the considered system are determined by the quadratic equation
k(e) = 1, which has different coefficients when € belongs to different energy intervals. The
corresponding solutions are trivial though rather cumbersome, and therefore there is no need
to present them here in an explicit form.

The above analysis shows that, although in the model under consideration g(E) can be
obtained in an explicit analytic form, the corresponding calculations are rather tedious even
in the simplest case, so that for practical purposes a numerical computation of the DOS on
the basis of equation (28) appears more preferable. Nevertheless, analytic consideration of
the Landau energy spectrum can be done within the quasiclassical approach even for a more
general 2D model in which an arbitrary dispersion relation along one of the two directions
is assumed.

5. Landau bands in a 2p strongly anisotropic lattice

Now turn back to equation (24) and consider the low-flux limit, which means that
&/ Py « 1. Of course, one can readily make flux @ small compared with flux quantum
@y just by application of a small field B, but the point is that even in the highest available
fields of the order 10-100 T the ratio ¢/dy in conventional crystals is extremely small,
&/Pg ~ 1073~107%, The latter is due to the fact that an enormous field of the order
10° T should be applied to the crystal lattice to obtain total flux through 2 unit cell equal
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10 ®p. The smallness of the parameter $/$p gives ground for the following power series
expansion

€(v — 2mnd /Do) = (V) — € (1)2nd/ Do + 36" (V) 2D/ Do)* + - . (36)
Keeping in equation {24} terms only up to the first order in 2rnd/®y, we have
tfin+ D+ tf(n— 1)+ [E - 2te(u) — QIR f(n) = 0. 37

Here 2 = eB/mec is the cyclotron frequency, and m = m(v) stands for the effective mass,
which depends through the parameter v = p,b/h on position at the Fermi surface. For m™!
we have: m~'(v) = m7u(v), where m, = h?/abt and u(v) = ¢(v)/t. In conventional
metals the width of the conduction band is of the order of 1 = szme, with Py = %t /ap and
m the electron mass (ap is the Bohr radius). The estimation of the mass m, in this case
yields m, = m, while u(v) is of the order of unity or less.

The energy spectrum given by eguation (37) is well known in the literature as the
Wannier—Stark ladder since equation (37) corresponds exactly to that of a tight-binding
chain in a uniform electric field [15]. In analogy with the Wannier—Stark ladder the energy
spectrum of the Schrédinger equation (37) consists of a periodic set of discrete levels with
separation 52, which is nothing but the Eandau spectrum

E,(0) =2t +Fe(w)+H20)n. (38)

The analogy between the Wannier~Stark ladder and the Landau spectrum is, however, not
complete because the Wannier—Stark ladder is infinite in both directions whereas the Landau
spectrum is limited from the bottom. To see this in more detail, consider the spectrum just
above the bottom of the energy band. In this case ¢/(v) = 0 and a term proportional to ®?
should be taken into consideration in equation (36). So, after substitution of equation (36)
into equation (24}, we arrive at the following equation:

tfin+ VD +tfin—N+IE-2+e)—(en))f(m) =0 (39
where

o = €" (1) 22 B/ by, (40)
The derivative in equation (40) is taken in the minimum v of the dispersion relation e(v).

To solve the difference equation (39), it is convenient to introduce a function ¢(x)
depending on some dimensionless variable x:

Plx)y =Y F(me"™. 1)

In terms of ¢(x) the difference equation (39) can be written as a differential one

28%¢

gl

+2t(1 —cosx)p = [E — e(v)]¢. (42)

This equation has the form of a Schrddinger one for a ‘particle’ moving in the potential
U(x) = 2t{(1 — cosx). Its energy spectrum may be readily found with the help of
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the quasiclassical approach. Thus, after some standard manipulations we obtain from
equation (42) a quasiclassical quantization rule

35 k(x, y)dx = J(n, y) (43)

with £(x) = [(y—1+cos x)]'? and y = [E +€(v)]/2t. The right-hand side of equation (43)
is given by

J(n, y) = @mo/t'){(n + 1) + [(-1)"/x]sin " [W cos(pa)]}. (44)

Here p is a wavevector in direction across the chains, and W stands for the quasiclassical
tunnelling probability under the crest of the periodic potential U (x)

W =exp(—H./H). (45)

The characteristic magnetic field H, determines the scale of fields such that for H > H.
the discrete Landau levels are broadened into bands. The field H, is given by

X
H, = ﬂe[ k(x)] dx. (46)
rab

—Xb

Here 6 = [t/e"(v)]'/? and Lxg are the turning points of the ‘particle’ in the potential U (x).
The integral (43) can be expressed in terms of complete elliptic integrals of the first and
second kinds.

5£k(x, Y dx = 16[(y* = DF(/2, y) + E(x/2, y)l. (47)

Taking into account that for low-lying levels, in which we are interested, the parameter
y < 1, and that in this [imit the right-hand side of equation (47) is equal to ~ 2wy, we
have

En(p) = (o) + BQ{(n + £) + [(=1)"/x] sin™ [W cos(pa)]}. (48)

The effective mass entering the cyclotron frequency in (48) is now given by m () = m.. /6.

Thus, one can see from equation (47) that the energy spectrum of the system under
consideration consists of a set of equidistant Landau levels with separation %£2, which are
broadened into Landau bands due to the lifting of their degeneracy on orbit centre position
in a periodic 2D lattice. The width of these bands is proportional to the field-dependent
tunnelling probability W (H), which is of the same form as in coherent magnetic breakdown
[16].

4. Conclusion

The energy spectrum of a 2D Bloch electron in a strong quantizing magnetic field is an
old classical problem intimately connected with a number of applications in solid-state
physics partially enumerated in the introduction. Although this problem has been extensively
explored for the past decades, only a few exact results in this field are known. One of them
is the simple analytic expression for the DOS given by Wannier e al 7] for a square lattice
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with a tight-binding electron Hamiltonian in the rational flux case. Only nearest-neighbour
site correlations have been assumed in [7]. On the other hand, long-range correlations are
inevitably present in every physical system and in some cases (see above for details) should
be taken into ¢onsideration. In this connection the result of [7] is generalized in the third
section of the present paper to the case of a 2D lattice model with exponentially decreasing,
as a function of inter-site distance, overlap integrals. It was done on the basis of a transfer-
matrix approdch developed earlier in the problem of plasma oscillations in superlattices [11].
The transfer-matrix approach proved to be useful also in the energy spectrum study of yet
another 2D lattice model. In this model, considered in the fourth section, a 2D lattice consists
of a periodic set of parallel chains with arbitrary electron dispersion, which are correlated
in the transverse directions by dint of nearest-neighbour electron hopping. Such a model to
all appearances is applicable to organic conductors of the (TMTSF) o X family [17] (TMTSF
= tetramethyltetraselenafulvalene), which are layered crystals with layers consisting of a
weakly correlated periodic set of organic conducting chains. In the rational flux case the
DOS of this model depends on polynomials (27) and has an integral form (26) that permits
oné to obtain an explicit expression for any specific form of dispersion relation €(v) and
readily lends itself to numerical computations. For intra-chain overlap integrals that are
exponenttally decreasing with inter-site distance, the exact DOS in the rational flux case is
expressed in terms of elliptic integrals (32). In the low-flux limit, j.e. when &/®y < 1,
the energy spectrum can be derived for arbitrary electron dispersion e(v). In this case the
Schrﬁdinger gquation (37) takes the form of a difference equation, which is well known in
the Wannjer—Stark problem of an electron in a uniform electric ficld on a one-dimensional
lattice. Such similarity makes it possible to consider equidistant Landau spectrum (38), by
aha.logy with the Wannier—Stark ladder, as some sort of ‘magnetic Wanniee—Stark ladder’.
A thore detalled analysis of this analogy based on the Green functions technique will be
published elsewhere.

A simple quantization rule (43) is also derived for low-lying levels, with respect to the
band bottom. This quantization rule yields an energy spectrum (48) composed of equidistant
Landau levels broadened into bands whose width is proportional to the probability factor (45)
similar to that of magnetic breakdown systems.

In conclusion, two remarks on possible applications of the above results are in order. The
first one is that the difference equation (39) also arises in the problem of the upper critical
magrietic field, Hcy, calculated in a 1D superconducting superlattice {18]. The physical
reason for this lies in the fact that H,, is determined by the lowest edge of the Landau
spectrum of a ‘particle’ in an external magnetic field, as is well known in the theory of
superconductiVity, The unconventional, from the Bardeen—Cooper—Schrieffer (BCS) theory
of éui)ercondugitivity point of view, non-linear temperature behaviour of Hy3(T), observed in
1D syiperlatticeé [13], is, in the long run, due to non-linearities in H of the lowermost Landau
band edge. Since the above results pertain to the 2D geometry, a favourable opportunity
appears to explain non-linearities in Hco(T) of a 2D superstructure in the same fashion as
in a 1D superconducing superlattice. In particular, the so-called positive curvature of the
Hz(T) in a 2D superconducting superlattice made of mismatched dislocation network in a
PbTe/PbS muitilayer [19] can be explained in this way. The corresponding results will be
published elsewhere.

The second remark addresses the probiem of a magnetic-field-induced series of structural
Peierls-like phase transitions periodic in inverse field, which has been observed in 2D organic
conductors of the (TMTSE), X family [17]. A very similar phcnomenon was predicted recently
in periodic 2D magnetic breakdown structures [20], and in a 2D conductor subjected to a
perpendicular quantizing magnetic field and SImuItaneously modulated by a ID periodic
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potential lying in the plane of this 2D conductor [21]. Since, as was pointed out above, the
energy spectrum (48) is applicable to 20 organic conductors, and, on the other hand, it is
of the same type as that exploited in [20,21], an intriguing opportunity appears to explain
a cascade of Peierls-like structural phase transitions in organic conductors on thie basis of
the Landau band energy spectrum found in this paper.

Of course, the presentéd list of possible applications is far from being coniplete arid
can be readily extended because many problems in condensed matter physics are intimately
related to the problem of a Bloch electron on a 2D lattice.
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